China launched the world's first
quantum-enabled satellite in the early morning hours of Tuesday, marking the
first step in building a space-based quantum communications network that is
virtually un-crackable.
The 631-kg satellite, which is named after the
ancient Chinese philosopher and scientist Micius, lifted off at 1:40 am atop a
Long March 2D rocket from the Jiuquan Satellite Launch Center in northwestern
China. It will operate 500 km above the Earth's surface for at least two years.
It is the third in a row of the Chinese Academy of
Sciences' space science satellite firsts, following the Dark Matter Particle
Explorer satellite that will help scientists deepen their understanding of the
past and future of galaxies and the universe and Shijian 10, which carried out
a series of experiments in microgravity in space for physical and life
sciences, according to the academy.
Research has shown that it is practically
impossible to crack, intercept or wiretap quantum communications because its
physical traits mean it cannot be replicated, separated nor reverse engineered.
Any attempt to interfere with its transmissions will leave a mark, disrupt the
communication and result in parties involved being warned.
In addition to China, researchers in Austria,
Germany, Singapore, Britain, Canada and Italy are also developing
quantum-enabled communications technologies, they said.
Expected
to change human communication
The satellite, Quantum Experiments at Space Scale
(QUESS), will circle the Earth once every 90 minutes after it enters a
sun-synchronous orbit at an altitude of 500 kilometers.
It is nicknamed "Micius," after a fifth
century BC Chinese philosopher and scientist who has been credited as the first
one in human history conducting optical experiments.
In its two-year mission, QUESS is designed to
establish "hack-proof" quantum communications by transmitting
uncrackable keys from space to the ground, and provide insights into the
strangest phenomenon in quantum physics -- quantum entanglement.
Quantum communication boasts ultra-high security as
a quantum photon can neither be separated nor duplicated. It is hence
impossible to wiretap, intercept or crack the information transmitted through
it.
With the help of the new satellite, scientists will
be able to test quantum key distribution between the satellite and ground
stations, and conduct secure quantum communications between Beijing and
Xinjiang's Urumqi.
QUESS, as planned, will also beam entangled photons
to two earth stations, 1,200 kilometers apart, in a move to test quantum
entanglement over a greater distance, as well as test quantum teleportation
between a ground station in Ali, Tibet, and itself.
"The newly-launched satellite marks a
transition in China's role -- from a follower in classic information technology
(IT) development to one of the leaders guiding future IT achievements,"
said Pan Jianwei, chief scientist of QUESS project with the Chinese Academy of
Sciences (CAS).
The scientists now are expecting quantum
communications to fundamentally change human development in the next two or
three decades, as there are enormous prospects for applying the new generation
of communication in fields like defense, military and finance.
Spooky
& entangled
Quantum physics is the study of the basic building
blocks of the world at a scale smaller than atoms. These tiny particles behave
in a way that could overturn assumptions of how the world works.
One of the strange properties of quantum physics is
that a tiny particle acts as if it's simultaneously in two locations -- a
phenomenon known as "superposition." The noted interpretation is the
thought experiment of Schrodinger's cat -- a scenario that presents a cat that
may be simultaneously both alive and dead.
If that doesn't sound strange enough, quantum
physics has another phenomenon which is so confounded that Albert Einstein
described as "spooky action at a distance" in 1948.
Scientists found that when two entangled particles
are separated, one particle can somehow affect the action of the far-off twin
at a speed faster than light.
Scientists liken it to two pieces of paper that are
distant from each other: if you write on one, the other immediately shows your
writing.
In the quantum entanglement theory, this bizarre
connection can happen even when the two particles are separated by the galaxy.
By harnessing quantum entanglement, the quantum key
technology is used in quantum communications, ruling out the possibility of
wiretapping and perfectly securing the communication.
A quantum key is formed by a string of random
numbers generated between two communicating users to encode information. Once
intercepted or measured, the quantum state of the key will change, and the
information being intercepted will self-destruct.
According to Pan, scientists also plan to test
quantum key distribution between QUESS and ground stations in Austria. Italy,
Germany and Canada, as they have expressed willingness to cooperate with China
in future development of quantum satellite constellations, said Pan.
Life
changing
With the development of quantum technology, quantum
mechanics will change our lives in many ways. In addition to quantum
communications, there are quantum computers that have also drawn attentions
from scientists and governments worldwide.
Quantum computing could dwarf the processing power
of today's supercomputers.
In normal silicon computer chips, data is rendered
in one of two states: 0 or 1. However, in quantum computers, data could exist
in both states simultaneously, holding exponentially more information.
One analogy to explain the concept of quantum
computing is that it is like being able to read all the books in a library at
the same time, whereas conventional computing is like having to read them one
after another.
Scientists say that a quantum computer will take
just 0.01 second to deal with a problem that costs Tianhe-2, one of the most
powerful supercomputers in the world, 100 years to solve.
Many, however, is viewing this superpower as a
threat: if large-scale quantum computers are ever built, they will be able to
crack all existing information encryption systems, creating an enormous
security headache one day.
Therefore, quantum communications will be needed to
act like a "shield," protecting information from the
"spear" of quantum computers, offering the new generation of
cryptography that can be neither wiretapped nor decoded.
Going
global?
With the launch of QUESS, Chinese scientists now
are having their eyes on a ground-to-satellite quantum communication system,
which will enable global scale quantum communications.
In past experiments, quantum communications could
only be achieved in a short range, as quantum information, in principle, could
travel no more than 500 kilometers through optical fibers on the land due to
the loss of photons in transmission, Pan explained.
Since photons carrying information barely get
scattered or absorbed when travelling through space and Earth's atmosphere,
said Pan, transmitting photons between the satellite and ground stations will
greatly broaden quantum communications'reach.
However, in quantum communications, an accurate
transmission of photons between the "server" and the
"receiver" is never easy to make, as the optic axis of the satellite
must point precisely toward those of the telescopes in ground stations, said
Zhu Zhencai, QUESS chief designer.
It requires an alignment system of the quantum
satellite that is 10 times as accurate as that of an ordinary one and the
detector on the ground can only catch one in every one million entangled
photons fired, the scientist added.
What makes it much harder is that, at a speed of
eight kilometers per second, the satellite flying over the earth could be
continuously tracked by the ground station for merely a few minutes, scientists
say.
"It will be like tossing a coin from a plane
at 100,000 meters above the sea level exactly into the slot of a rotating piggy
bank," said Wang Jianyu, QUESS project's chief commander.
Given the high sensitivity of QUESS, people could
observe a match being lit on the moon from the Earth, Wang added.
After years of experimenting, Chinese scientists
developed the world' s first-ever quantum satellite without any available
reference to previous projects. Now they are waiting to see QUESS's performance
in operation.
According to Pan, his team has planned to initiate
new projects involving research on quantum control and light transmission in
space station, as well as tests on quantum communications between satellites,
all-time quantum communications and the application of quantum key network.
"If China is going to send more quantum
communication satellites into orbit, we can expect a global network of quantum
communications to be set up around 2030," said Pan.
By Zhao Lei in Jiuquan Satellite Launch Center,
Inner Mongolia (chinadaily.com.cn/Xinhua)
No comments:
Post a Comment